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ABSTRACT

The Space Power Experiment Aboard Rockets (SPEAR) 1 payload was
launched on December 13, 1987. It had a primary objective of providing
guidelines in designing high-voltage (HV) systems for use in Low-Earth
Orbit (LEO). The experiment consisted of 24 HV bias operations using
two 20 cm diameter spheres attached to the rocket by booms. The
SPEAR-1 rocket charged to substantial negative potentials during the
flight when the spheres were biased positive with respect to the rocket.
This thesis uses the electrostatic analyzer ion data to determine the
charging response of the rocket body. The peak potential was reached
during a 45 kV sphere bias sequence resulting in a -17.4 kV rocket body
potential at 361 km altitude. The rocket body potential varied between 7
and 38 percent of sphere potential. Geomagnetic orientation, vice alti-
tude. had greater effect on rocket body potential. The flight data also
indicated that neutral gas emissions from the rocket attitude control
system (ACS) triggered transient discharge currents that effectively

grounded the rocket body potential. ACS firings resulted in an order of
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magnitude change in the rocket body potential.
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I. BACKGROUND

A. OVERVIEW

During the past decade, the trend in the design and development of
satellites and other space-based platforms has been to design large vehi-
cles with high power requirements. Interest in the charging of vehicles in
the lower ionosphere has increased because of the desire to use this type
of space vehicle in Low Earth Orbit (LEO).The planned space station and
space platforms for use in'the Strategic Defense Initiative are two appli-
cations of high-voltage pulsed power systems desired for use in LEO.

In order to gain some scientific data that could be used to provide
guidelines in the design of high-voltage (HV) power systems, the Space
Power Experiments Aboard Rockets (SPEAR) program began in December
1986. The SPEAR program was initia:ed by the Strategic Defense Initia-
tive Office, Innovative Science and Technology Division, and was orga-
nized into three research groups:

1. Theoretical modeling

2. Ground-based laboratory (vacuum chamber)

3. Flight experiments utilizing sounding rockets to carry experiments
into the LEO environment

The SPEAR program authorized two space flights, designated
SPEAR-1 and SPEAR-2. SPEAR-1 was launched on December 13, 1987,
and SPEAR-2 is currently schéduled for launch on July 16, 1990 [Ref.
1:p. 1]. This thesis uses the particle detector data from the SPEAR-1

experiment.




B. PREVIOUS RESULTS

Previous experiments performed in the lower ionosphere used an
electron beam to study the processes that occur when high potentials are
exposed to the space environment [Ref. 2:p. 1]. These experiments tended
to complicate the interpretation of the process and could change the cur-
rent collection characteristics of the beam-emitting vehicle [Ref. 2:p. 4].

A more recent experiment (conducted in December 1985) was the
cooperative high-altitude rocket gun experiment (CHARGE) 2. This rocket
had an electron beam-emitting mother payload electronically tethered to
an ejected daughter payload. Its major goal was “...to measure payload
charging and return currents during periods of electron emission.”
[Ref. 3:p. 2469] One result from CHARGE 2 indicated that an electrical
discharge occurred in the vicinity of the daughter payvload. The discharge
was believed to be caused by nitrogen gas emissions from the daughter’'s

combined thruster and rate control system (TRCS). [Ref. 3:p. 2469

C. THE SPEAR-1 ROCKET

The short development time of the SPEAR-1 rocket (December 1986-
December 1987) required a design philosophy which would keep the
payload simple but sophisticated enough to accomplish its scientific
objectives. The designers wanted to avoid the use of sophisticated micro-
processor control and to utilize previously developed diagnostic instru-

ments to reduce the development and component integration time.

The major challenge was to develop a HV power supply capable of
generating 10s of kV and delivering 10s of amperes for short periods
while still conforming to the volume and weight restrictions imposed
by the capabilities of a Black Brant 10 sounding rocket and the
requirement to reach an apogee exceeding 300 km. [Ref. 1:p. 2]




This design philosophy resulted in a simple but very effective design
for SPEAR- 1. The experiment design included two spherical conductors
that were separated from the rocket body by a fiberglass boom. Figure 1
shows a general configuration of the rocket instruments and subsystems
[Ref. 1:fig. 3-1]. The two spheres were .2 m in diameter and were made
from aluminum and plated with gold over nickel. A spherical design was
chosen for the conductors in order to provide a means of comparison of
current collection from a space plasma with known analytic models. [Ref.
2:p. 2].

The upper portion of the boom that separated the two spheres uti-
lized a grading ring structure to ensure a uniform potential drop from the
spheres to the main’portion of the boom that was maintained at the
rocket body potential. The rings prevented a large change in the potential
occurring over a short distance, thereby keeping the voltage below the
threshold for arcing. The grading rings were spun from aluminum sheet
and nickel plated. When mounted on the fiberglass support, they com-
prised a series of 46 shallow, saucer-shaped rings connected together by
resistors to provide the needed uniformity of potential. The total resis-
tance provided by the grading ring structure was 1.1 MQ to sphere 1 and
980 kQ to sphere 2. The difference was due to the different lengths of the
boonis necessary to accommodate the spheres in their stowed, prede-
ployment configuration. [Ref. 1:p. 4]

To accommodate the instruments and other subsystems necessary

to conduct the experiment, the equipment was engineered into three
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sections. The first section housed the diagnostic equipment including
photometers, low-light TV cameras, neutral pressure gage, the high-
voltage power supply and capacitors, Langmuir probe, wave receivers,
and the particle detectors. The specific instruments and data obtained
for use in this thesis will be described in the next section. The high-
voltage power supply and capacitors were sealed and filled with sulphur
hexaflouride to maintain a pressure of one atmosphere for the duration
of the flight. The surrounding diagnostic instruments were evacuated
during the rocket ascent, exposing them to the ambient pressure.

The second section of the rocket body housed the attitude control
system (ACS) and the telemetry section. The ACS was used to orient the
spheres in three different positions relative to the geomagnetic field. The
different orientations allowed magnetic effects of the HV interaction to be
analyzed. Figure 2 shows the orientation of the spheres with respect to
the geomagnetic field. The near-perpendicular orientation was from a line
joining the spheres to the rocket body axis. [Ref. 2:fig. 4]

The third section of the rocket body consisted of a hollow cathode
plasma contactor that used argon as the operating gas. The purpose of
the plasma contactor was to clamp the rocket body potential near the
plasma potential during the voltage bias operations. It was located at the
end of the rocket away from the spheres to minimize any contamination
to the sphere environment. The plate covering the plasma contactor was
to have been pulled away after separation of the third stage booster.

Unfortunately, the cover plate jammed during the separation, preventing
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Figure 2. Geomagnetic Field Orientations




the plasma source from being exposed to the ionosphere. Due to this
failure, the rocket body charged to high negative potentials that gener-
ated sheaths that modified the charge sheaths of the spheres. This made
comparisons with the previously mentioned analytic models less mean-

ingful. [Ref. 2:p. 1]

D. THE INSTRUMENTS

The prime instrumentation for the SPEAR-1 experiment was the
electronics which measured the currents and voltages on the spheres
and booms [Ref. 1:p. 3]. The current and voltage measurements were
supplemented by the other diagnostic instruments mentioned in the
previous section.

The analysis conducted in this paper utilizes the data collected from
the ion and electron detectors located on the rocket body. Four imaging
ion and electron detectors were utilized to monitor the energetic ion and
electron fluxes. The detectors measured particles with energies of 10 eV
to 30 keV at several different view directions relative to the axes of the
instruments. Previous rocket flights used detectors that were devoted to
single pitch angles. This was a major shortcoming in that many pitch
angles could not be measured. SPEAR-1 eliminated this problem by
using a new design which measured O- to 180-degree pitch angle
simultaneously. These detectors were provided to the SPEAR project by
Dr. Roy Torbert, University of Alabama, Huntsville. [Ref. 4]

The instrument spectra were generated by sweeping over the particle
energy range in 32 steps, each step being held for 1 ms. This provided
particle spectra with a 32 ms time resolution. A total of 26 telemetry




channels were assigned to the four particle detectors, which were
arranged in two groups of two with their axes of symmetry viewing in
opposite directions. Figure 3 shows a simple diagram of the particle
detector orientation with respect to the rocket body. Within the detector,
the sensor pads were assigned alphanumeric codes (4A, 4B, 5A, etc.) that
identified each pad’'s position on the detector. Each of these positions
corresponded to a particular view direction and was assigned one of the
26 channels. The fields of view of each look direction were approximately
5° in the polar and 10° in the azimuthal direction. The geometric factor of
the detectors was 1.35 x 10-4 cm?2 e str » eV/eV, and their energy band-
width was 11 percent [Ref. 1:p. 20; Ref. 5]. Figure 4 is a simple schematic
of the detector just described. It shows a typical particle trajectory corre-
sponding to the view direction of 56°. Particles entering from this direc-
tion pass through the view window and impact on the 5A sensor pad.

[Ref. 4]

E. CHAMBER TESTS

To prepare for the SPEAR-1 flight, a series of vacuum chamber
experiments was performed on mock-ups of the boom and rocket. The
tests were conducted at the University of Maryland plasma chamber

facility and the B-2 chamber at NASA-Lewis Plum Brook Station.

The principal purpose of the test was to verify the high voltage engi-
neering and ensure that no unexpected discharges or arcs occurred
in the high voltage wiring that was exposed to the ambient vacuum
environment. [Ref, 1:p. 16].
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The chamber tests showed that a series of breakdowns occurred
between the spheres and the walls of the vacuum chamber. “The pres-
ence of the chamber walls, coupled with the existence of a weak magnetic
field, produced severe breakdowns at ionospheric plasma conditions,
even at very low pressures of neutral gasses.” [Ref. 6:p. 1389] The cham-
ber tests showed that the experiment would survive arcing but did not
provide a completely relevant scientific baseline for flight.

10




Additional research on the SPEAR-1 and other high-voltage tests
shows that brecakdowns are to be expected in vacuum chambers. “They
indicate that in any large space simulatioh chambers, electrical break-
down is likely to occur whenever voltages of more than a few kilovolts are

applied....” [Ref. 1:p. 6152]

F. FLIGHT OPERATIONS

SPEAR-1 was launched at 20:45 EST on December 13, 1987. The
launch took place at the NASA Wallops Flight Facility in Virginia. A
summary of key events during the flight sequence is provided in Table 1
[Ref. 1:p. 21]. As shown in Table 1, the rocket reached an apogee of 369
km at 350 seconds mission elapsed time (MET). The HV system was acti-
vated at +179 MET and then operated on its own timer. Twenty-four volt-
age bias operations were performed between 191 and 622 seconds. The
bias operations are shown graphically in Figure 5. The voltage bias of
sphere 1 is annotated above the trajectory and that of sphere 2 is below
the trajectory. As shown in Figure 2, the ACS placed the spheres into three
different orientations with respect to the geomagnetic field. These
maneuvers and their respective orientations are also indicated in Figure 5.

[Ref. 2:fig. 5]

G. FLIGHT RESULTS
SPEAR-1 was successful in its primary technical and programmatic
goal— the successful application of bias voltages up to 45 kV between

11
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-600
-180
-120
0
+4.4
+12
+44.4
+88
+93
+110
+113
+115
+116
+117
+118
+129
+149
+151
+160
+171
+179
+350
+403
+405
+518
+601
+641

TABLE 1

SPEAR-1 FLIGHT SEQUENCE

Alt
(km)

0.0
0.0
0.0
0.0
0.7
3.0
28.6
80.2
85.0
113.2
119.4
123.6
125.6
127.7
129.7
151.6
188.7
192.2
207.6
225.5
237.8
369.2
358.5
357.6
251.7
103.4
0.0

Function

ACS External

Uncage Gyro— Slew Launcher
ACS Internal

Terrier Ignition

Terrier Burn-Out
Second-Stage Ignition
Second-Stage Burn-Out
Second-Stage Separation
Third Stage Ignition

Third Stage Burn-Out

Third Stage & Payload Despin
Third Stage Separation

LP and Wave Receiver Doors Eject
Particle Detector Doors Eject
Wave Receiver Booms Deploy
ACS Position 1

Nose Cone Eject

ACS Position 2

Part Detector HV On

HV Booms Deploy, NPG Uncover
HV Experiment On

Apogee

Second-Stage Impact

ACS Position 3

ACS Position 4

Payload Starts Re-Entry
Payload Impact
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sphere and rocket without arcing. The measured currents and voltages
displayed an exponential decay expected for a classical discharge of a
capacitor into a linear resistor. [Ref. 6:p. 1390]

This was a particularly important result because the previous
vacuum chamber tests produced severe breakdowns at ionospheric
plasma conditions. The responsible mechanism for the breakdowns in
the vacuum chamber is understood to be the result of the entrapment of
secondary electrons emitted by the walls when they are bombarded by
the positive ions that are accelerated in the electric field established by
the biassed spheres. These results demonstrate that substantial differ-
ences can occur between a vacuum chamber experiment and the corres-
ponding space experiment. [Ref. 6:p. 1389]

The initial flight results also indicated that transient discharge cur-
rents could be triggered by vehicle gas release during ACS operations in
the discharge cycle [Ref. 6:p. 1393]. Two of the voltage bias operations
occurred during ACS thruster firings. The ACS thruster firings resulted
in temporary enhancements to the cnrrent collected by the spheres.
Figure 6 shows the capacitor voltage and plasma current versus time for
two bias operations. The bias operation on the left occurred at 285 km
without ACS activity. The one on the right occurred at 235 km and was
affected by the ACS firings. The current enhancements can be seen as
spikes in the plasma current. These current enhancements had very little
effect on the measurement of the capacitor potential because the charge

required to produce these spikes was small compared to the charge

14
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stored in the capacitor [Ref. 2:p. 6, fig. 16, 14]. A strong correlation was
demonstrated between the ACS firings and the enhanced current spikes.
Figure 7 shows the plasma currents and ACS firings versus time for the
two bias operations that occurred during ACS firings. The top two panels
correspond to the discharge cycle that began at 416.781 MET at an
altitude of 352 km. The bottom two panels occurred at 529.900 MET at
235 km. (The slight misalignments of some of the current spikes with the
ACS firings is believed to be a result of the slow sampling rate of the ACS
data.) These figures show that ACS firing functioned as a plasma contac-
tor and may effectively neutralize the rocket body potential. [Ref. 2:p. 6]

Determination of the potential of the spheres with respect to the
environment was complicated by the failure of the plasma contactor
mentioned previously. The measured potential was the voltage of the
capacitor (i.e., the sphere-to-rocket potential). This would have been
equal to the potential of sphere with respect to the ambient ionosphere if
the plasma contactor had maintained the rocket body potential at the
ionospheric potential. The failure of the plasma contactor resulted in the
rocket body being charged to several kilovolts negative during each of the
voltage bias operations. The initial studies of data from the electrostatic
analyzer supported the conclusion that the rocket body was at a several
kilovolt negative potential. [Ref. 1:p. 28]

The measured spectra of ions also indicated that the energization
process was not just a straightforward acceleration from the ionosphere

of thermal ions of an energy equal to the negative potential of the vehicle.

16
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Although a cutoff could be determined from the spectra, there was not
always a narrow peak in the flux. This continuum of energies below the
cutoff was considered to be “...the result of secondary ions produced as a
result of the impact of the primary particles on the vehicle surface, and
returned to the surface by the electric field due to the vehicle charge.”
[Ref. 1:p. 28]

Initial studies of the ion ESA data resulted in an upper and lower
bound for estimates of the rocket body potential for one operation
sequence. Modeling of the SPEAR charging pattern produced the results
plotted in Figure 8 [Ref. 8]. The ESA-derived potential estimates are also
indicated.

The preliminary analysis of the ESA data which resulted in Figure 8
was never continued due to funding constraints. A major purpose of the
work done in this paper is to analyze the rocket body potential for all 24
discharge operations. The major new scientific goal is to obtain the rocket
bodyv potential during ACS firings, which has not been done. This is

important because all high-power satellites or space platforms will use

some type of ACS to maintain orbit.
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II. DATA REDUCTION

A. GENERAL

The rocket body potential was determined by interactive data analy-
sis using graphical display techniques. The first step in this process was
an analysis of all the data contained in the 26 channels allocated to the
four particle detectors. All the data taken by the detectors had not been
reviewed previously, so it was a primary aspect of this work. In addition,
this made it possible to establish the context for the intermittent effects
of the ACS firings.

The four particle detectors included one ion electrostatic analyzer
(ESA). one electron ESA, one ion charged particle analyzer (CPA), and one
electron CPA. These four instruments were allocated the specific chan-
nels shown in Table 2.

Since the rocket body charged to high negative potentials during the
voltage bias operations, the ion ESA and CPA were expected to provide
the most useful data for determining the charging peak. However, in
order to provide a thorough data reduction, each channel was analyzed
to determine:

1. Whether like channels provided consistent and similar results;

2. Whether a particular channel displayed unusual or interesting
phenomena; and

3. Whether the channel operated properly and could provide con-
structive data for the analysis.
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The data from each channel was separated into 24 data files corre-

Plots of the count rate versus MET were the first graphical depiction

TABLE 2

ESA AND CPA CHANNELS

e- CPA 08
e ESA 2A
e- CPA 09
e- ESA 2B
e - CPA 10
e ESA 2C
N/C
e- ESA 3C
N/C
e- ESA 3D
i+ ESA 4A
i* CPA 08
i+ ESA 5A

B. COUNT RATE PLOTS
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i+ CPA 12
i+ ESA 4C
it CPA 10
it ESA 4D
i*+CPA 11
e CPA 1l
e- ESA 2D
e- CPA 12
e- ESA 3A
N/C
e- ESA 3B
it ESA 4B
i+ CPA 09

sponding to the 24 discharge periods conducted during the experiment.
Table 3 shows the MET at which each discharge began, the voltages
applied to the spheres during each discharge, and the altitude at which
the discharge occurred. Each discharge lasted approximately five sec-
onds, so each data file was created using six seconds MET beginning at

the discharge MET truncated to the nearest whole second.

of the data used in the analysis. These plots were useful because they

provided a high time resolution picture of any phenomena occurring




TABLE 3
SPEAR-1 HV DISCHARGE TIMES VOLTAGES AND ALTITUDES

SPEAR-1 HV Sequence
Peak Voltage

MET Sphere 1 Sphere 2 Alt (km)
191.927 7098 21400 257
210.851 25660 200 285
229.800 36400 15000 303
248.342 13470 200 321
267.202 13650 15330 337
286.102 43860 200 350
304.590 7098 21500 359
323.391 24570 800 365
342.251 37860 15000 369
360.727 13290 300 369
379.506 13650 14800 366
398.344 45320 200 361
416.781 8008 22700 352
435.549 25120 200 340
454.387 36220 14600 325
472.847 13100 200 307
491.624 13650 15500 287
510.449 43320 800 263
528.900 7098 21600 235
547.658 24570 800 206
566.465 36400 14600 172
584.900 13290 200 137+
603.658 546 800 97.7*
622.452 728 800 55.4*
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without regard to the energy of the particles. These plots were used to
identify particle phenomena and to establish the scale necessary to gen-
erate the energy vs. time spectrograms. Figure 9 shows a characteristic
count rate plot for the ion ESA 5A. This operation began at 286.102 MET
at an altitude of 350 km. The plot shows a peak count rate in excess of
106 occurring midway through the discharge. There is a very distinctive
“hump” that occurs toward the end of the discharge. This phenomenon
was evident in all of the ion ESA 5A count rate plots, and it will be shown
later that it is due to low energy ions.

A third phenomenon visible during the first 1.5 seconds of the dis-
charge is a modulation effect. The modulation is evident by tracing the
peak count rate from the beginning of the discharge. Further analysis of
this effect revealed that it is a result of a beat between the energy sweep

rate and the rate of change of the potential.

C. ENERGY SPECTROGRAMS

Review of the particle detector data contained in the 26 channels
continued by generating an energy spectrogram for each six-second MET
corresponding to its particular voltage bias operation. As can be seen
from Table 2, three detectors failed to provide data, so the analysis was
reduced to 23 channels. Since the SPEAR-1 experiment included 24 volt-
age bias operations, this required the generation and analysis of 552
spectrograms.

Figures 10 and 11 show a characteristic spectrogram from the elec-

tron ESA 3A and the ion ESA 5A detectors. On both figures, the energy
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scale represents the 32 energy “bins™ that were swept by the detector
during the discharge period. Correspondence with the detector designer
revealed that energy bins 1 and 2 (represented by the top two gradua-
tions on the scale) are not useful. These bins correspond to measure-
ments taken while the high-voltage supply is recharging to its peak volt-
age (energy sweeps are from high to low energy) [Ref. 9]. The log of the
count rate is represented by the shading on a scale from 3.0 to 6.0. This
scale typically provided the best resolution for discriminating the peak
counts of the energies.

The electron ESA 3A spectrogram (Figure 10) shows data that are
typical of the data from the electron detector. This discharge operation
began at 286 MET at an altitude of 350 km. The spectrogram depicts the
count rate peaking at the mid-energies and falling off rapidly to lower
energies within the first half-second of the discharge.

The ion ESA 5A detector (Figure 11) provided much more useful
data. This spectrogram shows data from the same discharge (286 MET,
350 km). The spectrogram shows a definite peak count rate and corre-
sponding energy for most of the discharge period. The last two seconds of
the discharge are dominated by high counts of low-energy ions. This cor-
responds to the hump described earlier in the count rate plot (Figure 9).
This latter phenomenon was only evident in the ion ESA 5A detector,
which viewed “up” toward the spheres. The other four ion sensors looked
“down,” away from the spheres. Unfortunately, the other detectors (5B,

5C, and 5D) which had “up” view directions, failed to operate.
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The distinct drops in count centered at 288 MET on the spectrogram
are believed to be the result of neutral gas emissions from the ACS.
These drops were evident in all of the other detectors for the same dis-
charge operation.

The spectrograms generated on the computer screen and printed in
hard copy for analysis were in color. The spectrograms provided in this
report, with the exception of Figure 11, are in black and white due to
reproduction restrictions. Spectrograms for the ion and electron CPAs
were also printed and analyzed. The validity of the CPA data was
questionable, so it was not used during the remainder of the analysis.
[Ref. 10]

In addition, the initial review of all the spectrograms indicated that
the last two discharge operations occurred during re-entry and resulted
in little or no charging. This reduced the number of discharge operations
to be analyzed to 22. A complete set of the 24 spectrograms for ion ESA
5A and ion ESA 4B are included in Appendix A and Appendix B,

respectively.

D. CHARGING ANALYSIS

Review of the energy spectrograms indicated that detectors ion
ESA 5A, ion ESA 4C, and ion ESA 4B would provide the best data for
determining the charging peak. Initially, two methods were utilized to
determine this peak. The first method was selecting the maximum count
rate and its corresponding energy for each of the 32 ms sweeps in the
five-second discharge cycle. This process was accomplished initially by
selecting the peak count rate (and corresponding energy) by inspecting a

28




numerical table of the data. After several manual iterations, an interac-
tive program was written to select the count rate via the computer cursor.

Figure 12 shows a sequence of count rate versus energy plots for the
discharge operation that began at 210.851 MET. Data for each figure are
approximately one second apart and are taken from the ion ESA 4C
detector. The 32 tick marks on the plot represent the spectra generated
by sweeping over the energy range in 1 ms intervals. They correspond to
the 32 intervals that are on the vertical (energy) axes of the
spectrograms.

The computer program selected and “boxed” the highest count rate
for each sweep, but it also provided some flexibility for the analyst. As
each sweep was analyzed, the analyst could accept the computer's sclec-
tion, change the selection, or skip it completely. In addition, the “quality”
of each selected data point was recorded as good or questionable. A brief
description of charging peak characteristics is provided in Appendix E.

Figure 12a shows a peak at 6 kV and a ditfuse spectrum at lower
energies. The low energy peak (10-100 eV) is attributed to sputtering
induced by the 6 keV 0+ beam (assumed) [Ref. 11]. The measurement at
40 keV represents energy bin 1 that occurs during the high-voltage sup-
ply reset, as discussed earlier.

At 211.914 seconds (Figure 12b), the peak is at approximately 2 keV
and is more distinct. Figure 12c has a peak at 650 eV. This peak is
broader and less distinct than 12a and 12b. Figure 12d shows a peak
Just below 300 eV. This sweep is typical of some of the more questionable
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measurements. Individually, these plots could be difficult to analyze, but,
when analyzed in conjunction with the energy spectrograms, they could
be interpreted. Figure 12e at 214.945 seconds shows the peak at 70 eV.
The sharper peak in count rate for the lower energies (<100 eV) was
characteristic for the ion ESA 4C detector.

For the sequence represented by Figure 12 (a through e), 123 energy
sweeps were generated, giving 123 data points for calculation of poten-
tials. Of these data points, only two were considered questionable. Typi-
cally, less than five percent of the data points were questionable. Since
three detectors were analyzed for each of the 22 usable discharge peri-
ods, approximately 8,000 of these plots were generated and analyzed.

The second analysis method used a distribution function (f) or phase

space density given by

count rate

f=

where E is the energy of the particle. This method also required the
review of each 32 ms sweep. The measured ion was assumed to be O,

Figure 13 depicts a typical energy sweep using the phase space den-
sity. The diagonal line represents the one count level for a given energy.
The computer boxed the energy that had the highest count rate, and it
was left to the analyst to determine whether this peak also corresponded
to the peak in the distribution function.

The distribution function shown in Figure 13 corresponds to the

count rate plot given in Figure 12a. Comparison of Figures 12a and 13
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shows that visual determination of the distribution peak is much more
difficult than that of the peak count rate and little additional information
is gained.

Both methods were used for two discharge operations from each of
the three detectors selected for use in the analysis. After confirming the
consistency of the results using both methods, the maximum count rate

method was used for the remainder of the analysis.

E. RESULTS OF ANALYSIS—ROCEKET POTENTIAL

From the data points selected in the analysis, graphs of the selected
energies/potentials (eV) versus MET were then plotted. Figure 14 shows
a typical potential plot produced using the peak count rate method.

This plot is from the analyses of ion ESA 4B detector data for the
first discharge operation that occurred at 191.927 MET at an altitude of
257 km. For this discharge operation, sphere 1 was biased to 7 keV and
sphere 2 was biased to 21.4 keV. An important characteristic of this
potential versus MET plot is that it is linear on a log-linear scale (e.g.,
exponential decay). This was the case in all plots of this type for all three
detectors and agrees with behavior of the sphere potential versus time.

Three distinct drops in the potential are also very evident in this
graph. These drops are of one or two orders of magnitude greater than
the small, random deviations in the plot, which are due to uncertainties
in the analysis.

Figure 15 depicts another discharge operation with data from the ion
ESA 4B detector. This operation began at 398.344 MET at an altitude of
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361 km. Sphere 1 was biased to 45.3 keV, which was the highest poten-
tial applied during the entire experiment. Sphere 2 was left nominally
uncharged at 200 eV.

The inferred potential plot is very well behaved (linear) initially, but
becomes more erratic during the final two seconds of the discharge. It
also indicates a potential that is two times greater than the potential
shown in Figure 14. This corresponds to the potential being applied to
the sphere during this operation being double the potential that was
applied during the first discharge operation.

As discussed earlier, the rocket was reoriented during the experi-
ment to analyze the geomagnetic effects. One of these ACS maneuvers
occurred at approximately 405 MET, just prior to the discharge operation
that began at 416.781 MET. Another ACS maneuver began at approxi-
mately 518 MET and was still occurring when a discharge operation
began at 528.900 MET.

Figures 16 and 17 graphically portray the impact of these ACS
maneuvers on the potential of the rocket body. Figure 16 shows consid-
erable drops in the potential due to the ACS firing even though the
maneuver had been completed. Figure 17 shows an even greater impact
because the ACS jets were still firing. The wide dip (631.7-532.0) appears
to be an artifact of processing due to lack of ion counts at all energies.
Detector 4C suggested a higher potential during this period. A complete
set of potential plots from the I ESA 4B detector is contained in Annex C.
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Potential plots were created for the results obtained from each of the
three detectors. Next, an interactive program was written to fit a curve to
the Jdala points to determine the ume constants for the potential decay.
Figure 18 depicts a typical result from this analysis. Several iterations of
this process revealed that the data points could be divided into two
groups and fitted independently of each other. The two curve fits that can
be seen in Figure 18 were labeled HI and LO with their respective slopes.
Data from the slopes computed for the ion ESA 4B detector is shown in
Table 4. The analysis was repeated on the ion ESA 4C detector and a
summary of these results is contained in Table 5.

The results from both detectors indicated that there was no signifi-
cant variation in the slope with respect to the altitude of the rocket. As
can be seen from Tables 4 and 5, the HI slope increased after the rocket
was reoriented into position 2. The LO slope in both detectors showed
very little change.

Since only two usable discharges occurred after position 3, no valid
observation could be made. Data from the 191, 416, 454, and 528 MET
discharges were not used in this analysis. Plots from these periods had
significant potential drops due to gas releases that resulted in the curve

fit being skewed.

F. ROCKET VS. SPHERE POTENTIAL
Since the particle detectors were housed in the rocket body, the
potentials determined corresponded to the peak negative potentials that

were induced on the rocket body due to failure of the plasma contactor.
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TABLE 4

ION ESA 4B SLOPES

W MET (sec)
Position 1— Plane

210 285 0.438 0.594
229 303 0.450 0.533
248 321 0.411 0.796
267 337 0.467 0.468
286 350 0.471 0.397
304 359 0.470 0.470
323 365 0.389 0.480
342 369 0.478 0.634
360 369 0.391 0.669
379 366 0.417 0.605
398 361 0.454 0.740
X = 0.439 0.580
| o= 0.031 ____0.118
Position 2~ Plane of Booms Parallel to Magnetic Field
435 340 0.544 0.440
472 325 0.485 0.630
491 307 0.555 0.654
510 263 0.593 0.540
0.544 0.566
C= 0.038 0.084
Position 3— Boom 1 Parallel to Magnetic Field
566 172 0.317 0.317
584 137 0.591 0.499
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TABLE 5
ION ESA 4C SLOPE SUMMARY

Slope
H LO
Position 1 X = 0.437 0.543
o = 0.028 0.106
Position 2 X = 0.631 0.565
c = 0.153 0.109

Consequently, the next graphical analysis conducted was a rocket poten-
tial versus sphere potential to compare the computed rocket potentials to
the sphere potentials measured by the voltage sensors electronically con-
nected to the spheres. Detector ion ESA 4B was selected for this analysis
because it contained the best set of data points determined during the
charging peak analysis. This comparative analysis was conducted for
each discharge cycle. When one sphere was held at near-zero voltage,
only the sphere having an induced voltage bias was compared. When
both spheres had voltages applied, a graph was generated for each. Fig-
ures 19 and 20 show typical rocket versus sphere potential plots for
cases where only one boom was biased greater than 10 keV.

Both figures show a linear relationship between the sphere potential
and the rocket body potential. The drops in rocket potential notable in
Figure 19 on the right side are similar to effects noted for gas emissions
from the ACS (W. J. Raitt has suggested these may be due to outgassing
on the booms early in the mission [Ref. 12]). Since the capacitance to the
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sphere(s) to the rocket is much higher than the capacitance of the rocket
body to space, these emissions discharge the rocket body but have no
effect on the HV capacitor system.

Figure 20 also shows a deviation from linearity at the high potential
end of the plot. This phenomenon was also noted in two other plots of
this type. For each of these discharges, the bias applied to one of the
spheres exceeded 40 kV. These were the three largest voltage bias
sequences. None of the other discharge operations displayed this effect.

During this analysis, overlays were made of these plots to determine
any effects from altitude or different rocket orientations. Figure 21
depicts the results from this analysis. The data points indicated by the
symbol 5 are from the 398 MET discharge shown in Figure 20. With the
exception of the deviation at the high potential end, this plot was
representative of all the discharges that occurred while the rocket was in
position 1. The data points indicated by a 7 are representative of the
plots taken when the rocket was in position 2. The number 8 represents
data from position 3. All other discharge data would simply plot on top of
the numbers that corresponded to its particular orientation, regardless of

the altitude.
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III. SUMMARY

A. ROCKET POTENTIAL

The initial charging peak analysis conducted on the SPEAR-1 ESA
data by the original investigators (Figure 8) gave high and low estimates
for the rocket body potential. The data analyzed in this paper indicates
that the rocket body potential was much closer to the higher estimate.
The broad, and occasionally ambiguous, charging peaks now appear to
be partly an artifact of missing the charging peak as it moves between
energy channels.

There was an absence of a charging peak in ion ESA 5A for poten-
tials below 500 V, though there were clear peaks in the “down” viewing
ESAs. This appears to be a trajectory effect related to the shape of the
sheath around the vehicle.

During the 398 MET discharge operation, sphere 1 was charged to
45.3 kV. The results from the analysis of this discharge period indicate
that the rocket body charged to a peak of 17.4 kV. This rocket body
potential was 38 percent of the sphere potential and represented the
highest percentage of all the discharge operations. The 398, 286, and 510
MET discharges all displayed non-linear effects at high voltages. These
discharges were the only operations that had one of the spheres biased in
excess of 40 kV. A summary of the results is provided in Table 6.
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TABLE 6
ROCKET BODY POTENTIALS

MET ALT Rocket Potential Percent of Peak
(sec) (km) (volts) Sphere Potential
191 257 5700 26
210 285 5700 27
229 303 9940 27
248 321 3350 24
267 337 4380 28
286 350 13200 30
304 359 5700 26
323 365 5700 23
342 369 7360 19
360 369 3350 25
379 366 4380 29
398 361 17400 38
416 352 4380 19+
435 340 5700 22
454 325 7630 21
472 307 2550 19
491 287 5700 36
510 263 9940 22
528 235 2250 11*
547 206 1920 7
566 172 1445 10
584 137 1445 10

*indicates a change in the rocket orientation with respect to the geomagnetic field

B. EFFECTS OF ACS GAS EMISSIONS

All of the graphs produced during this analysis support the earlier
conclusion that gas emissions from the ACS effectively grounded the
rocket body [Ref. 2:p. 6]. The discharge operations that occurred immedi-
ately after these ACS maneuvers typically showed an order of magnitude
drop in the rocket body potential. This drop in potential was evident in
other discharge operations, but only when the potential of the rocket had
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a magnitude greater than 1 keV. No ACS discharge effects were noted

when the rocket body potential was less than 50 eV.

C. ALTITUDE AND ORIENTATION EFFECTS

The results indicate that the orientation of the rocket with respect to
the geomagnetic field was more critical than the altitude. This was
demonstrated in Figure 21 and is supported by the results in Table 6.
The near-perpendicular orientation had the higher percentages, and the
third orientation (boom of sphere 1 parallel to geomagnetic field) had
much lower percentages.

The rocket body potential was significantly reduced during the last
two discharge operations. The 603 MET at an altitude of 98 km shows a
peak potential of less than 50 eV. The 622 MET discharge gave no
results, indicating that the instruments had “burned up” during the

re-entry (see Appendices A and B).
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IV. CONCLUSIONS

The data contained in this work provides a myriad of opportunities
for further research. The energy spectrograms show numerous phenom-
ena that merit explanation. Additional research needs to be done to cor-
relate the ACS telemetry with the observed drops in the rocket body
potential. In addition, a more-detailed analysis of the rocket body orien-
tation and particle detector view directions with respect to the geomag-
netic field needs to be conducted.

The results from this work also provide a baseline from which future
rocket experiments (SPEAR-3) can orient their payload and sensor
design. An increase in the number of energy steps from 32 to 64 with a
20-30 ms sweep period is needed. This increase, coupled with a mass
analysis of the returned ions, would provide a much clearer picture of the
rocket-space environment interaction.

The electrostatic analyzer provided the best source of data for this
work. The CPA data was questionable and made no relevant contribution
to the analysis. The CPA design should be deleted from future
experiments.

The rocket ACS acted as a plasma contactor during firing.
Unfortunately, the limited telemetry data for the ACS made correlations
in ACS firings and rocket body potential more difficult. Future

experiments should dedicate more telemetry for the ACS in order to
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provide specific information on which gas jet(s) fired, how much gas was

emitted, and more precise timing.
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APPENDIX E
CHARGING PEAK CHARACTERISTICS

The ambient ion distribution function (f) in the ionosphere is

nominally a 0.1 eV 0* Maxwellian. This is illustrated in Figure E-1.

A

“Maxwellian”
KT ~ 0.1 eV

log f

I
Figure E-1. Ambient Distribution

When the plasma is accelerated through a potential difference,
the distribution function which should be observed at the rocket is

illustrated by Figure E-2.

A

1
|
]
'
log f |
|
]
]

I
qé E

Figure E-2. Accelerated Distribution
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In the absence of ions generated by some secondary source, there
should be no ions at energies below the “cut-off” potential (q¢).

The electrostatic analyzer (ESA) response to the accelerated.
cold, ionospheric plasma is determined by the wide energy “window,”
set by the 11 percent AE/E detector characteristic. For example, at
6 keV, the energy window is approximately 660 eV wide. This should
lead to a near delta function response by the ESA shown in Figure E-3.
Data like this are shown in Figure 12e.

4 qd >> KT,
Count
Rate

X X X X X X

qé

Figure E-3. Delta Distribution

The actual data does not always have this appearance. A much
broader peak is reflected in the ESA response, as illustrated in Figure

12a. This is a result of one or all of the following:

1. The peak is missed due to incomplete energy sampling
(primarily due to telemetry limitations). The modulation in Fig-
ure 9 is caused by this incomplete sampling.

2. Ionization of neutral gas(es) near the rocket.

3. Oscillation in the rocket potential at frequencies greater than
1 kHz.

In addition, ion fluxes well below the peak can be observed as a

result of sputtering induced by 1-10 keV ambient O*. [Ref. 11]
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